Managing Lab Protocols and the Pursuit of a Vaccine during the Covid-19 Outbreak

Vaccine Pursuit and Managing Lab Protocols during the Covid-19 Pandemic

On April 22, 2020, the Director-General of the World Health Organization (WHO) said, “To be clear, WHO’s advice is to find and test every suspected case, not every person in a population.”

While testing every person is not essential to controlling COVID-19, finding and testing every suspected case is. As the COVID-19 outbreak sweeps across the globe, the world turns to laboratories for answers. Laboratory scientists are responding by providing doctors with ways to diagnose COVID-19 and by pursuing the development of a vaccine that could someday stop the pandemic in its tracks. Until a vaccine is found, social distancing and testing are the best ways to control the spread of the disease.

The 2019 novel coronavirus, now named SARS-CoV-2, has sickened millions of people with COVID-19. By the end of April 2020, the United States had by far the highest number of confirmed cases and deaths in the world, according to Johns Hopkins University.

Testing is the only way to determine the case fatality rate (CFR), which is the ratio between confirmed deaths and confirmed cases. Testing is also the best way to assess the overall effectiveness of preventive measures and vaccines. Determining the CFR requires time and reliable data to confirm cases and deaths based on trusted laboratory testing. Strict adherence to proven and accepted laboratory protocols provides the most accurate data possible.

Managing Laboratory Protocols during the COVID-19 Outbreak

Managing laboratory protocols during the SARS-CoV-2 outbreak is challenging because, as with the outbreak of any novel virus, researchers are entering uncharted territories. Virologists had a limited understanding of transmission patterns, clinical features, severity, and risk factors for COVID-19 infection at the start of the pandemic. To address those unknowns, WHO established Four Early Investigation Protocols, which are now known as the WHO Unity Studies.

The protocols rapidly and systematically collect and store data that will be critical in refining recommendations for case definition and surveillance, and for characterizing the key epidemiological features of COVID-19. The protocols will also help the medical community gain a greater understanding of the spread, severity and spectrum of the disease, as well as its impact on the community. Information gained from the data will help guide countermeasures, such as case isolation and contact tracing.

Rapid detection of COVID-19 cases is essential for controlling the emergence of this rapidly spreading illness and for understanding the key epidemiological features of the disease, but rapid detection requires wide availability of diagnostic testing.

Within a month of the first outbreak in China, the Centers for Disease Control and Prevention (CDC) developed a real time Reverse Transcription-Polymerase Chain Reaction (rRT-PCR) test that can diagnose COVID-19. The CDC provides instructions for the use of real-time rT-PCR assays for the in vitro qualitative detection of coronavirus in sera and respiratory specimens. FIND also maintains a list of SARS-CoV-2 tests in development or commercially available for COVID-19, and WHO maintains a list of COVID-19 in-house PCR protocols assays.

Challenges of managing laboratory protocols

Even with reliable assays, managing laboratory protocols during COVID-19 is challenging. The pandemic has disrupted the supply chain for many laboratories, for example. Personal protection equipment (PPE) is scarce, for example, and there have been shortages of SARS-CoV-2 PCR reagents.

Biosafety is also a major concern, as keeping lab workers safe is a high priority. The CDC has released biosafety guidelines for labs working with Coronavirus: Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with Coronavirus Disease 2019 (COVID-19). These guidelines include essential information on virus isolation, waste management, and decontamination. The EPA also released an expanded COVID-19 disinfectant list on March 13, 2020, but social distancing is far more effective than disinfection for controlling viral transmission. Unfortunately, social distancing is much more difficult than disinfection in a typical laboratory, where technicians work side by side and in close proximity to specimens.

While the protocols are far from perfect, and disruptions in the supply chain can slow testing, laboratory protocols will continue to play an important role in preventing the spread of COVID-19 until a vaccine is found.

Pursuit of a COVID-19 Vaccine

The best way to defeat COVID-19 is to develop a vaccine, of course, but vaccine development can often take 10 to 15 years. Vaccines for respiratory viruses are also elusive. Two toddlers died in 1966 from respiratory syncytial virus (RSV), for example, and vaccines for the parainfluenza viruses (PIVs) and metapneumovirus (MPVs) are still not available.

There are 120 projects working towards a vaccine; only five have received approval for clinical trials in humans. University of Oxford researchers began Phase I human trials of ChAdOx1 nCoV-19 in late April. In this trial, half of the roughly 1100 participants receive ChAdOx1 nCoV-19 vaccine, while the control group receives the common meningitis vaccine, MenACWY. The first two volunteers, one from the test group and one from the control, received their inoculations on April 23, 2020.

Fast tracking the development of this vaccine or others could potentially save thousands or millions of lives, providing the vaccine undergoes sufficient testing to ensure its safety and efficacy. It is possible to get a licensed vaccine in one and a half to two years, and even possible to get a vaccine into use much sooner. Reliable laboratory testing will help researchers determine if their vaccines are working.

Many of the battles against the COVID-19 outbreak will be fought in laboratories in the United States and around the world. Widespread testing will play an important role in reducing deaths associated with coronavirus and improving the health and well-being of people across the globe.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

This image has an empty alt attribute; its file name is GRACE-HEALTH-TECHNOLOGY_Frank-MAgliochetti.jpg

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

SOURCES:

https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19–22-april-2020

https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19–22-april-2020

https://coronavirus.jhu.edu/map.htmlhttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-investigations

https://www.cdc.gov/coronavirus/2019-ncov/lab/index.htmlhttps://www.finddx.org/covid-19-2/pipeline/

https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdf?sfvrsn=de3a76aa_2

https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fhcp%2Fhealthcare-supply-ppe.html

https://asm.org/Articles/Policy/2020/March/ASM-Expresses-Concern-about-Test-Reagent-Shortageshttps://www.cdc.gov/coronavirus/2019-ncov/lab/lab-biosafety-guidelines.htmlhttps://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2

https://www.labconscious.com/blog/2020/3/17/laboratory-sustainablity-in-the-coronavirus-crisishttps://www.historyofvaccines.org/content/articles/vaccine-development-testing-and-regulation

https://cvi.asm.org/content/23/3/189https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547785

https://www.cbsnews.com/news/coronavirus-vaccine-covid-19-human-clinical-trial-oxford-england/

http://www.ox.ac.uk/news/2020-04-23-oxford-covid-19-vaccine-begins-human-trial-stagehttps://www.drugbank.ca/drugs/DB15656

The Pandemic (Almost) Nobody Saw coming – Covid19

Covid 19 The Pandemic Almost Nobody Saw coming

Of all the changes 2020 had brought, almost nobody saw coronavirus disease 2019 (COVID-19) coming.

First reported in late December 2019 in Wuhan, China, the newly discovered coronavirus (2019-nCoV) quickly made its way around the globe, killing thousands and sickening hundreds of thousands more. There is quite a bit of information out there to disseminate we felt it time to give an overview and a few thoughts on Covid-19; as this situation is fluid we do expect to add more information in future posts.

On March 12, 2020, the World Health Organization declared COVID-19 a pandemic, meaning the disease had spread to multiple continents around the globe. Like other pandemics, COVID-19 seemed to move swiftly, taking governments, healthcare providers and citizens by surprise. 

Not everyone was blindsided, though – a handful of experts in global health, the biosciences, national security, emergency response and economics got together in October 2019 to talk about what would happen if a global pandemic suddenly hit the world’s population. The experts discussed how Americans and others around the world would fare if a novel and highly transmissible coronavirus outbreak reached pandemic proportions.

Just as its real-life counterpart did, the fictional coronavirus jumped between countries and continents via international air travel. In both accounts, the virus caused problems for health care systems, economies, and political leaders. The fictional scenario assumed governments would first try closing borders and banning travel, but by the time authorities enacted border closures and travel bans, carriers would have unknowingly transmitted the disease to others before developing symptoms. The experts also projected the travel bans would disrupt trade and worsen international cooperation.

The simulation provided a shocking glimpse into the near future, but in today’s rapid-fire news cycle, very few people took notice. When the predictions began to come true in the form of COVID-19, many people regarded the threat somebody else’s problem because it was occurring in another country and could never reach the shores of our nation. Others thought COVID-19 was nothing more than a seasonal influenza. They were wrong on both counts.

COVID-19 is Here, and it is More than Just a Flu

The first patient with COVID-19 walked into a U.S. emergency department on January 19, 2020. Today, thousands of Americans have tested positive for novel coronavirus.

COVID-19 is similar to the flu in many ways, and is significantly different in other ways. Both are infectious illnesses, for example, and both cause a dry cough and fever. Influenza causes aches, chills, fatigue, and headache and chills; these symptoms are less common with COVID-19. Flu symptoms come on suddenly, getting worse over a day or two. Symptoms of COVID-19 develop gradually, worsening over the course of several days.

COVID-19 is different from the flu in other ways:

  • Difficulty breathing and shortness of breath are the hallmarks of COVID-19 – they are also signs to seek immediate medical attention; flu does not cause shortness of breath and difficulty breathing
  • COVID-19 is more likely to kill than the flu – about 3.4 percent of people with COVID-19 have died and seasonal flu generally kills far fewer than 1 percent of those infected
  • Unlike the flu, there is no vaccine for COVID-19, and it will probably take a year to develop one
  • There is no treatment for COVID-19
  • Children, who are typically at high risk of contracting flu, are at lower risk for COVID-19 than are older adults

With a higher basic reproduction number, which is the number of infections one infected person can cause COVID-19, is more infectious than the flu. COVID-19 seems to have a basic reproduction number somewhere between 2 and 2.5, so the average person infected with the coronavirus spreads the disease to 2 to 3 other people. The basic reproduction number of seasonal influenza varies from year to year, but is often about 1.28.

COVID-19 is wreaking havoc on nearly every segment of the population, but it presents special danger to some. Director of the National Alliance on Mental Illness (NAMI) HelpLine Dawn Brown reported an increase in calls to the NAMI hotline. Callers expressed a wide variety of concerns, including feelings of depression and loneliness from social isolation, worries about job stability and income, fears of getting sick, grief over the death of a loved one, and homelessness. “Right now, the bigger concerns are around anxieties about the unknowns, you don’t know what you don’t know, and the people we serve tend to be a little more vulnerable to anxiety and panic.”

What Happens in the Future Depends Largely on What We Do Today

Arguably late to the situation, the U.S. government issued The President’s Coronavirus Guidelines for America, which directs citizens to listen to state and local authorities, stay home when sick, self-isolation measures, and good hygiene. States have issued a variety of public health emergency declarations, including the activation of National Guards, school and business closures, and limits on event sizes.

The medical community geared up quickly in response to the pandemic. Hospitals began enacting preparedness plans, clinicians developed treatment plans for critically ill patients, and researchers immediately turned their attention to developing a vaccine. Mayo Clinic announced the development of a new test that provides results in 24 hours.

The actions of individuals, families, businesses and communities will have the greatest influence in how the pandemic ends – they will also bear the brunt of its consequences. In even the best case scenario, hundreds or thousands of people in the United States could perish; new research suggests the number of deaths in the nation could exceed 2 million.

While nobody knows exactly how COVID-19 will change our lives, almost everyone can agree that the changes will be profound.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

This image has an empty alt attribute; its file name is GRACE-HEALTH-TECHNOLOGY_Frank-MAgliochetti.jpg

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

SOURCES:

http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic

https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—3-march-2020

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_2

https://www.researchgate.net/publication/265345236_Estimates_of_the_reproduction_number_for_seasonal_pandemic_and_zoonotic_influenza_A_systematic_review_of_the_literature

https://www.whitehouse.gov/wp-content/uploads/2020/03/03.16.20_coronavirus-guidance_8.5x11_315PM.pdf

https://www.nga.org/coronavirus/#stateshttps://www.phe.gov/Preparedness/COVID19/Documents/COVID-19%20Healthcare%20Planning%20Checklist.pdf

https://jamanetwork.com/journals/jama/fullarticle/2762996

https://www.nih.gov/news-events/news-releases/nih-clinical-trial-investigational-vaccine-covid-19-begins

https://www.mprnews.org/story/2020/03/12/new-mayo-clinic-test-could-speed-detection-of-covid19

https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf

Changes in Healthcare Expected in 2020 – 2021

The healthcare industry hit the ground running in 2020, and it doesn’t look like it will slow down anytime soon. In fact, healthcare is changing on so many different fronts, it might be tough to keep up this year. Here are 8 top changes in healthcare for 2020 – 2021. Frank Magliochetti will keep you up to date with the progress of all eight of these expected changes throughout the years ahead.

Top 8 Changes in Healthcare Expected for 2020 – 2021

1. Digitization

Like many other industries, healthcare is digitizing at a swift pace. Digitization of records had been the focal point for many in the healthcare industry, but that changeover is nearly complete. In fact, a 2019 report shows that 84 percent of healthcare professionals had already switched their practices over to digital health records. The report also shows that those who had digitized health records delivered better patient care, provided better individual outcomes for patients, improved workplace experience for healthcare workers, and could offer cost-effective healthcare services in comparison to those organizations that did not digitized.

2. Smart devices

 Now many in the healthcare industry are hoping to gain these benefits and more by expanding their digital transformation into other areas of their internal and external operations. The emergence of several new technologies, such as blockchain, cloud and edge capabilities, and 5G connectivity will fuel these changes in 2020 – 2021 and beyond.

Some healthcare organizations have adopted remote and self-monitoring medical chatbots, for example, in which patients use a messenger program to interact with a computer that simulates human conversation. Others are investigating the use of smart pills, which are medications equipped with electronic sensors that, once ingested, send wireless messages to devices outside the body. Personalized medicine will become increasingly common, as more life sciences and healthcare organizations begin to create smarter, more specific and more custom-tailored products and services for each patient interaction. Other advances, such as bioprinting of prosthetics, will take shape with the realization of new materials and build processes; these advances will help reduce invasiveness and increase safety of medical implants.

3. Big data and AI

2020 – 2021 will likely see greater adoption of artificial intelligence (AI) – only a third of U.S. healthcare organizations have adopted AI technology, using it to overhaul triage and streamline administration, diagnostics, and more.

Bigger, better data leads to more powerful AI, but big data and artificial intelligence leave many patients and healthcare institutions feeling vulnerable. Data privacy and accountability for insider threats will be major concerns for healthcare institutions in the upcoming years.

4. Renewed support for nurses

Advances in technology, advanced algorithms, and AI have taken some of the burden off the shoulders of nurses, especially when it comes to the monitoring and decision support of patients. No matter how sophisticated medical technology becomes, however, it will never replace the human touch and compassion that nurses bring to the bedside. Nurses bring experience, judgment and the capacity to know what patients need, even when technology suggests otherwise. In fact, the World Health Organization (WHO) has named 2020 the Year of Nurse and Midwife to highlight the need for more nurses and to advocate for increased investments in the nursing workforce.

5. Patient safety

Patient safety has been a pressing healthcare issue for decades, yet WHO reports that one in 10 patients in harmed while receiving hospital care. The Joint Commission has issued their National Patient Safety Goals Effective January 2020, in which they outline ways to improve patient safety. Safety goals include indentifying patients correctly, improving staff communication, storing and administrating medicines correctly, using alarms safely, infection prevention, identifying patient safety risks, and preventing surgical errors.

6. 5G communication technology

The implementation of 5G communication technology will allow clinicians to connect with voice, video, and data. Telehealth and remote home monitoring systems have allowed patients to receive care at home, which is especially helpful for those in rural areas, and helped doctors interface with patients or share information with specialists for years. Slow network speeds and congestion from a growing Internet of Things (IoT) can delay patient care and can even hurt outcomes; 5G technology can speed connections and resolve congestion to keep information flowing freely.

7. Human centered design

Human-centered design relies on the human perspective to solve problems; it focuses on what users, not designers, think. Unlike other approaches to healthcare in which providers assume what the patient wants, human-centered design starts by understanding the perspective of the person experiencing the problem.

8. Natural language processing

Doctors spend about half their patient time staring at computer screens, according to research. Natural language processing (NLP) can help doctors spend more time with patients. NLP products capture conversations between clinicians and patients, transcribe that discussion into a word-for-word transcript, and populate the electronic health record with information from that conversation.

The healthcare industry is at a significant turning point, with next-gen technology taking medicine into uncharted territories. While AI, 5G and other technologies will hyper-connect patients and caregivers, NLP, improved software design, and the human touch of nurses and doctors will change the face of medicine as we move through the decade.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

SOURCES:

https://www.usa.philips.com/c-dam/corporate/newscenter/global/future-health-index/fhi2019/fhi-2019-report-united-states.pdf

https://www.who.int/news-room/campaigns/year-of-the-nurse-and-the-midwife-2020

https://www.who.int/features/factfiles/patient_safety/en/

https://www.jointcommission.org/-/media/tjc/documents/standards/national-patient-safety-goals/npsg_chapter_hap_jan2020.pdf

https://www.healthaffairs.org/doi/abs/10.1377/hlthaff.2016.0811

Laboratory Management Systems – Level of Importance

Importance of Laboratory Management Systems

The need for more elaborate and accurate laboratory management systems is becoming more and more important as the scale of research and development continues to escalate.   Laboratories have been among the heaviest users of information technology since its inception more than 30 years ago. As places where questions are answered and breakthroughs begin, labs have played a defining role in defining and developing information management systems along the way.

The global laboratory information management systems (LIMS) market is growing rapidly. In fact, the research and consulting group, Acumen, anticipates the LIMS market size will around USD 2.4 billion by 2026, with 9.3% CAGR during the forecast time period. Technical advancements in pharmaceutical labs and the increasing need for laboratory automation will likely be the primary drivers behind this growth.

Biotechnological and pharma organizations are investing in research and development, which rely on sophisticated and scalable laboratory management systems for effective management and security, tracking data, patient demographics, billing, and more. To support the explosive growth of research and development, today’s laboratory management systems will need to evolve and grow.

The Evolution of Laboratory Management Systems
Information technology is the glue that holds the laboratory – and modern medicine – together. IT can compress the time and distance separating the lab from the patients and physicians. Laboratory information systems move information from place to place, seamlessly and instantaneously, to put information in the hands of doctors, patients, and interoperating businesses participating in the care, when they need it the most.

Most clinical labs once used laboratory information systems (LIS) to simplify administration and instrumentation tasks, and use laboratory information management systems to make collection, storage, and distribution of patient test results and other data easier. Many labs are now using full-service integrated systems that combine LIS and LIMS functions.

Simply combining several small lab management programs together will not be enough. Today’s LIMS must have advanced features that reduce or eliminate human error, improve real time tracking and time saving, increased revenue, and reduced workload and stress within the lab.

Tomorrow’s lab management systems will build upon today’s technologies, such as the ability to track samples in real time and unique auto-authorization feature that automatically approves reports with normal values. Modern lab solutions allow labs to manage logistics efficiently; assigning barcodes to samples at the collection station and notifying the processing center of the sample collection allows the lab to allocate resources, reagents and material even before the samples reach the processing center.

The next generation of laboratory management systems must be powerful and flexible enough to keep up with the evolving sophistication and specialization of clinical labs and their demands for advanced IT capabilities. Labs are increasing their use of molecular diagnostics, such as next-generation sequencing (NGS) systems that can create terabytes of patient data and analyses in the blink of an eye and other processes, which require a new approach to IT. Labs are also ratcheting up their ability to handle other emerging technologies, such as digital pathology, which present their own heavy-duty imaging storage and analytical processing challenges. Finally, lab management systems must evolve to handle the oncoming tsunami of data resulting from the push towards personalized medicine.

The rapid evolution of IT in healthcare creates an unparalleled opportunity to develop new, advanced laboratory management systems that can handle more data, save more money, and serve even more laboratory clients. The new systems will evolve to handle assay data management, data mining, data analysis, electronic laboratory notebook (ELN) and more.  Lab management systems that do not evolve may become outdated in their prime.

From introducing groundbreaking products to reducing waste and improving sustainability, laboratories are changing the face of research and clinical medicine. Innovations in laboratory management helps labs maintain their forward momentum in the ever-changing world of medical technology.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Source: https://www.acumenresearchandconsulting.com/laboratory-information-management-system-market

Using Blockchain Tech in Healthcare


Healthcare: Ready for Blockchain Technology

Healthcare requires prompt access to confidential patient information – lives can sometimes depend on it. Easy access comes at a price, though, as easily accessible information puts patient privacy and hospital data at risk. Blockchain technology has the potential to revolutionize healthcare by providing access to secure, accurate information.
Health information technology is becoming more crucial to the healthcare system, as doctors and nurses now spend more time typing than talking to patients, according to a study by Mayo Clinic. Health information technology is also important to patients who go to different practitioners and specialists who may not have access to the electronic healthcare records (EHR) system their primary physicians may use. Lack of access to health records can lead to repeat lab work, dangerous drug interactions, and more. Blockchain can help eliminate unnecessary repeat lab work, manage medications from different prescribers, and provide a patient’s vaccination history.  Access to healthcare information is also essential for insurance providers and researchers. Many are turning to blockchain.

What exactly is blockchain?
A very succinct history of the platform; An unknown person or group calling itself Satoshi Nakamoto started blockchain technology in 2009, it was started as a way to move the digital currency, bitcoin. In the years since, the uses for blockchain have expanded to exchange other types of digital assets, such as data.
Blockchain is an activity log that is tamper-proof, time-stamped and shared across a network of computers. Each transaction going into the log, or central database, is enclosed in a block and linked in chronological order to create a public chain, hence the name “blockchain.”
The blocks cannot be deleted, changed or otherwise modified, which means that blockchain creates an indelible write-once-read-only record that a transaction occurred.

Blockchain has three main components:

1.  Digital transactions – the information or digital asset stored in the blockchain
2.  Distributed network – a decentralized peer-to-peer (P2P) architecture featuring “nodes” of participants, each of whom stores a copy of the blockchain and is authorized to validate and certify any digital transactions on the network
3.  Shared ledger – the participants record ongoing transactions in a ledger shared by all the members, who verify the transactions using algorithms; the transaction is added to the record after a majority of members validate it

How Blockchain Technology can Improve Healthcare
Information management is one of the largest problems facing healthcare today. Spread across multiple and sometimes-inaccessible systems, information may not be available when needed most; unfettered access to this information can be a security risk. Blockchain could change all that by creating a decentralized system accessible to only those who hold the right keys.
The lack of a central administrator creates transparency, in that no single individual or organization can change the information, as could happen if the information were to live in the physical memory of one system. Furthermore, all of the members of the blockchain remain in control of their transactions and information.
Each member connected to the blockchain has two keys – a public key, which acts as a visible identifier, and a secret private key. One must have the private key to unlock a member’s identity and see what information on the blockchain is relevant to that member’s profile. This cryptographically links the two keys in such a way that only those who have the secret private key can identify the member.

As healthcare institutions provide services to patients, they track clinical information in their existing health IT systems. The institution then use application programming interfaces (APIs) to direct the patient’s public (non-identifiable) ID and standard data fields to the blockchain, where the blockchain stores each transaction by the patient’s public ID. Computer software processes the incoming transactions to make them searchable.
Healthcare institutions and other organizations can use APIs to query the blockchain directly to view non-identifiable patient information, such as age, gender and medical condition. Analysis of the information gained from these queries can lead to new insights into healthcare.

Patients who wish to share their identity with healthcare organizations may do so by providing their private keys, which allows the healthcare organizations to unlock patients’ data. The data remains unidentifiable to those without the private key.

Today, most healthcare organizations rely on health information exchanges (HIEs) and other methods of centralized data aggregation to gather wide scale health data. Blockchain creates a decentralized standardized method, which ensures accountability and easy access. The structure of blockchain offers a unique combination of access scalability, security, and data privacy that can facilitate the sharing and security of healthcare information. Many more uses will unfold for blockchain technology in all aspects of healthcare, research, laboratory management, record keeping, accountability, Q.A., and even insurance.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MB
Managing Partner Parcae Capital
www.parcaecapitalcorp.com
www.frankmagliochettinews.com

Healthcare: Precision Medicine Has Arrived

Will Precision Medicine Become Commonplace?

Will precision medicine become commonplace?

Precision medicine is a relatively new and powerful approach to medical care. Given its current growth rate and potential, precision medicine will likely be commonplace very soon.

Medicine is not always a one-size-fits-all solution – what works for one patient may not work at all for another. Individual differences in biology, environmental factors, and lifestyle may play a role in the risk of disease, affect symptoms, and even influence how well treatment works.

Treatments that shrink tumors or alleviate symptoms of arthritis in some patients, for example, are not always effective for other patients. Precision medicine aims to overcome the influences of biology, environment and lifestyle by matching the right treatments with the right patients.

Precision medicine involves the use of extensive medical testing that identifies unique differences in a patient’s condition, followed by the development of a treatment plan specific to that patient. In other words, doctors will run tests to identify unique characteristics that might make a patient more susceptible or resistant to certain diseases or treatments, and then create personalized treatment plans for each patient.

Precision medicine allows researchers and prescribers to predict which treatments and prevention strategies will work best to treat diseases in which groups of people. In contrast, the one-size-fits-all approach uses treatments and disease strategies designed for the average person.

Past, Present and Future of Precision Medicine

While the term “precision medicine” is relatively new, the concept of providing patient-specific treatment has been around for decades. For example, doctors perform blood tests to match patients with the right type of blood; they have been doing this since the early 1900s.

The advent of modern personalized medicine began about 20 years ago, when oncologists began using targeted therapy to treat HER-2 positive breast cancer. Precision medicine got a boost in 2015 with the introduction of the National Institutes of Health (NIH) Precision Medicine Initiative. NIH introduced the initiative in hopes of moving “the concept of precision medicine into clinical practice.” In other words, the initiative intends to make precision medicine commonplace.

The targeted, personalized approach already has a significant effect on many areas of medicine, including genomics that studies genes and their function, medical devices, and laboratory testing. Patients already benefit from precision medicine, especially patients with cancer. Doctors can use genetic testing to determine if a patient is at high risk for developing certain kinds of cancer, for example. When tests show that a person has a higher risk of cancer, a doctor can suggest ways to lower that risk. Cancerous tumors also provide genetic information that helps doctors develop more effective personalized treatment plans.  

The Precision Medicine Initiative has helped spur the commercial growth of precision medicine. The number of commercialized lab tests, known as predictive biomarker assays, is increasing dramatically. Predictive biomarker assays help doctors, pharmaceutical researchers and manufacturers predict the effectiveness of a treatment in any given patient group. These tests also help classify patients’ unique characteristics, which allow researchers and doctors to come up with the safest, most effective treatment for those specific patients.

Advancements in genome sequencing, an increase in consumer-focused healthcare, and innovations in healthcare information technology (IT) and connectivity have fueled explosive growth in the precision medicine market. Market Watch reports the value of the global precision medicine market at USD 47.43 billion in 2019, and projects the market will grow at a Compound Annual Growth Rate (CAGR) of 12.3 percent to reach a net market size of USD 119.90 billion in 2025.

Precision medicine will also stimulate further research exploring the genetic, environmental, and lifestyle factors that influence the development of disease and response to treatment. This research will likely bring about innovations that make precision medicine commonplace in clinical medicine.

SOURCES

Frank Magliochetti News

Frank Magliochetti News will be centered around reporting on trends, innovations, and news in the healthcare and bio/pharma industries.

Frank Magliochetti News is the latest in a growing network of online publications by Frank.

I’m please we have released Frank Magliochetti News, with so much going on it is my hope that Frank Magliochetti News will shed light on current, relevant, healthcare and pharma industry topics and innovations .  Please take time to head to my personal and corporate sites for news and information.
Earlier this year, Frank was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Earlier this year, Frank was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochettiNews.com


Healthcare Organizations of the Future

Changes in Healthcare Organizations of the Future

From the diseases we face to the technologies we use to treat them, healthcare in the United States is changing rapidly.

Frank Magliochetti confirms: that just a few short decades ago, most people received care from their family doctor and paid for it through private insurance provided by an employer. Diagnostic tests were limited to x-rays and a few blood tests, and treatments involved first generation drug therapies and invasive surgical procedures. Patient records were kept in a dusty basement offsite, and the information they contained was accessed only to provide continuing care to that individual patient. Computerized medical records, advanced fMRI and CT scanning, and robot surgery common today was the stuff of science fiction just 20 years ago.

Tomorrow’s healthcare landscape will be decidedly different from the care provided today, and light-years away from the healthcare of our parent’s day. A number of various factors, such as demographics, legislation, and technology, affect nearly every level of healthcare and affect nearly every person working in healthcare. These factors will drive the major changes occurring in healthcare over the next two to three decades.

The diseases people face will likely change as well. Diseases that were almost unheard of in younger populations years ago, such as obesity, diabetes and heart disease, will become major health issues across the generations.

The use of hospital services will likely grow significantly in the next decade, largely because of the increase in Medicare beneficiaries. The cost of hospital care will also rise; The George Washington University School of Business predicts this cost will increase from 0.9 percent to 2.4 percent of the budget by 2025.

Care will likely center on the patient’s experience, rather than on the needs of the institutions providing that care. Patients will have detailed information, on par with that collected by their doctor or hospital, about their own health and about health in general. The patients of tomorrow will also enjoy greater ownership of that data, and they will play a greater role in the decision-making process when it comes to their own health, well-being and medical care.

The Healthcare of Tomorrow

Healthcare in 2040 is only 20 years away, but it will be vastly different from what we have today. Two decades ago, we could not have envisioned the wearable devices that are commonplace today; medical technology will take us places in the next two decade that we cannot begin to imagine today. The next generation of sensors will likely move from wearable devices to invisible, always-on sensors embedded in devices surrounding us – or even embedded inside of us; medtech companies are already investigating ways to incorporate these always-on biosensors and software into devices that generate, gather and share health data.

By 2040, independent streams of health data will merge to create a multifaceted, complex and highly personalized picture of each individual’s well-being, for example. Artificial intelligence (AI) will allow for wide scale analysis of vast amounts of information and the creation of personalized insights into consumer health. The availability of this data and personalized insights can enable precision real-time interventions that allows patients and their caregivers to get ahead of sickness early enough to avoid catastrophic disease. Armed with a lifetime of highly detailed information about their own health and with a natural penchant for mobility, consumers of 2040 will also probably demand that their health information be portable.

Because of the demand for mobility and information management, technology such as interoperable data and AI will be major drivers of change, but only if the open platforms necessary for mobility and AI are secure. Information technology (IT) professionals will continually develop technologies that process threat data more efficiently and more accurately predict criminal activity.

While nobody can predict exactly what the healthcare landscape will look like in 2040 and beyond, nearly everyone can agree that it will be vastly different from the care we receive today.

Source

https://healthcaremba.gwu.edu/blog/how-we-can-expect-the-healthcare-industry-to-change-in-the-future/

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Radical Changes in Store for Structure of the Healthcare Industry

The Structure of the Healthcare Industry will Change Radically

The healthcare industry is changing at a blistering pace. Healthcare policies, technologies, insurance coverage, and the new focus on patient experience have triggered the evolution of healthcare into something yesterday’s providers would never recognize. And, chances are, the healthcare of tomorrow will look drastically different than the care provided today.

Change had come slowly to healthcare industry legislation in the nation’s early years. The first attempt at national health insurance came about in 1905, with the formation of the American Association for Labor Legislation; Speaker of the House Thaddeus Sweet vetoed the bill. The next major change in the healthcare industry didn’t come along until 1965 when, after 20 years of heated debate in Congress, President Lyndon B. Johnson initiated legislation introducing Medicare and Medicaid. The 2010 Patient Protection and Affordable Care Act was the last major healthcare legislation.

While changes to healthcare law and healthcare insurance had came slowly, the nation’s demographics and need for medical care is now changing rapidly. Furthermore, advances in research and medical technology have fueled an astonishing metamorphosis in healthcare.

Factors Contributing to the Changing Landscape of Healthcare

Perhaps the most notable change in healthcare is its explosive growth: healthcare became the largest employer in the United States in the third quarter of 2018, according to The Atlantic.

The nation’s aging population is a major driver of the healthcare job boom. By the year 2025, one-quarter of the workforce will be older than 55. By 2030, more than 170 million people in the United States will have at least one chronic health condition, according to the American Hospital Association (AHA). The rising population of older adults, and the increasing number of people with chronic illnesses, will require a growing pool of healthcare workers. In fact, the U.S. Bureau of Labor Statistics (BLS) expects jobs in the healthcare industry to account for a large share of new jobs created through 2026.

Other factors, including the health insurance market and healthcare regulation, will affect the structure of the healthcare industry. About half of the privately insured are covered under self-insured plans, which can vary dramatically.

The healthcare system is also moving towards a financial model based on value, rather than on volume. This shift will change the focus from treating diseases in hospitals to keeping patients healthy and out of the hospital.

Expect Monumental Changes in the Healthcare Industry

To handle these changes, the structure of the healthcare industry will undergo radical transformation in a number of areas, from insurance to the makeup of the board and the role of clinicians in leading renovations within an organization.

Provider organizations offering insurance products will likely experience substantial restructuring because they are essentially creating new businesses in a highly volatile market. In fact, several health systems have already introduced health plans in recent years, according to the Healthcare Financial Management Association.

Organizations without such products are restructuring, creating regionally focused, value-based care teams and enhancing consumer engagement. Moving towards a value-based system requires increased collaboration between health systems and health plans, the implementation of patient-centric technology, increased adoption of virtual care options, and a greater focus on public health. It also requires greater understanding of patient motivation and behavior, so many healthcare organizations will restructure to include patient experience departments.

Changes in organizational structures will manifest themselves in a number of ways. Evolution of an organization’s structure may include centralization and professionalization of the board to look more like boards in other industries, for example. This shift allows senior business leaders with niche expertise to guide healthcare organizations through insurance, risk management, IT, consumer engagement, investments and capital allocation.

Many healthcare organizations are putting physicians in leadership roles, asking their clinicians to lead clinical informatics, care model transformation, and population health management initiatives. In this way, the Chief Medical Officer (CMO) is evolving into the role of Chief Transformation Officer.

While it is nearly impossible to predict where the healthcare industry will be at the end of the 21st Century, it is safe to say that healthcare in the United States will undergo more changes in the next 80 years than it has in the entire history of the nation.

SOURCES:

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Is Healthcare Becoming an IT Business?

Healthcare is Becoming an Information Technology Business

Frank Magliochetti declares that; Health information technology now plays an important role in patient care, payment and research, but it wasn’t always this way. Today’s health information technology represents an evolution in record keeping within the healthcare industry. In 1924, the American College of Surgeons adopted the Minimum Standard Document to ensure the recording of a complete case record that included identifying data, chief complaint, personal and family history, physical examinations, laboratory results and x-rays.

In the 20th Century, those records were written by hand and paper copies were generally stored on or offsite, unless required for a hospitalization, doctor visit or research. Sharing patient information with even one consultant or payer typically meant long hours at the copying machine to create thick envelopes filled with data that could take a substantial amount of time to sort; sharing only pertinent information with multiple parties was next to impossible.

Computers and the internet heralded the information age and electronic health records (EHR), which allowed the mass sharing and analysis of data in an instant and without cumbersome and costly paper. In 2004, President George W. Bush created the Office of the National Coordinator (ONC), which now synchronizes HIT in the U.S. healthcare sector. Passed as part of the larger American Recovery and Reinvestment Act of 2009, the Health Information Technology for Economic and Clinical Health (HITECH) Act created incentives to use health care information technology.

Each of these events paved the way to today’s already robust and rapidly growing information technology business. HITECH seems to have worked – as of 2017, 86 percent of office-based physicians had adopted an EHR and 96 percent of all non-federal, acute care hospitals had a certified health IT department or person, according to the Office of the National Coordinator for Health Information Technology.

Today’s HIT Business

To meet the growing demand on the clinical side, hundreds of healthcare IT software and service companies have sprung up across the country. Healthcare IT Skills lists more than 350 such companies, including EHRs, consulting firms, medical device providers, population health, revenue cycle management, analytics, and more.

Healthcare information technology (HIT) merges electronic systems with healthcare to store, share and analyze patient information. The advanced technology also integrates with practice management software to improve office functions that lead to better patient care. HIT now features patient portals that provides patients with access to their medical history, allows them to make appointments, message their practitioner, view bills and even pay bills online. HIT also includes features to make practitioners’ lives easier, such as ePrescribing, remote patient monitoring, and master patient indexes (MPIs) that connects patient databases with more than one database, which allows different departments within a facility to share all of the data simultaneously. MPIs reduce the need for manual duplication of patient records for filling out claims and decrease errors involving patient information, which can result in fewer patient claim denials.

As with any disruptive technology, healthcare information technology has its drawbacks and its critics. Some complain that EHRs have led to practitioners spending more time sitting in front of a computer than talk with patients. Others bemoan the cumbersome federal regulations involved. The benefits of HIT, however far outweigh its downsides.

Advantages of today’s health information technology include the ability to use big data and data analytics to manage population health manage programs effectively, for example, which is impossible with old-fashioned paper records. HIT can use data and analytics to reduce the incidence of expensive and debilitating chronic health conditions, use cognitive computing and analytics to perform precision medicine (PM) tailored to each patient’s needs, and create a means by which academic researchers to share data in hopes of developing new medical therapies and drugs. Lastly, health information technology allows patients to obtain and use their own health data, and to collaborate more fully in their own care with doctors.

Tomorrow’s HIT companies will use artificial intelligence (AI), virtual simulations, and other emerging technologies to further enhance and improve healthcare. Technologies will include digital insurance markets, price transparency tools, cloud storage that will render costly and insecure data centers obsolete, self-serve mobile applications that will eliminate forms and faxes, and centralized clearinghouses that share information across organizations and state lines. Many of these HIT applications will improve labor productivity and, given the fact that wages account for 56 percent of all healthcare spending, improvements in this area could generate significant economic gains.

Information technology will undoubtedly continue in its growth as an important and increasingly essential part of healthcare. The benefits of HIT will also continue to expand, as researchers, doctors, patients and healthcare companies integrate healthcare information technology into their everyday lives and standard business practices

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Vaccinated for Measles?

Even Vaccinated People Can Get the Measles

Measles are a serious infectious disease that can cause serious complications, such as ear infections, inflammation of the throat and lungs, pneumonia, swelling of the brain known as encephalitis, and pregnancy problems. Once very common, measles are now rare thanks to vaccinations, but people who have been vaccinated can still get the measles.

The measles vaccine became widely available in 1963. In the decade prior to the vaccine, measles infected 3 to 4 million people in the United States each year, according to the Centers for Disease Control and Prevention (CDC). Of the cases reported, 400 to 500 people died, 48,000 were hospitalized, and 1,000 suffered encephalitis from measles each year.

Widespread immunization drastically reduced measles rates right away, but the rate of measles began to creep up again in fully vaccinated communities. In 1989, health officials recommended receiving two doses, with the first at 12 to 15 months old and the second at 4 to 6 years old. One dose of the measles vaccine is about 93 percent effective at preventing measles, while two doses are about 97 percent effective. The immunity provided by the measles vaccination is long-term and probably lifelong.

The aggressive two-dose measles vaccination campaign eliminated measles from the U.S. in 2000. Now a measles outbreak is sweeping the nation and 2019 is shaping up to be one of the worst years for measles since its elimination nearly 20 years ago. This trend is worrisome for the very young, the very ill and other people who cannot receive a vaccination, as it puts them at risk of contracting measles. The increase of measles also increases the risk of infection among people who have received a measles vaccination but are still at risk of getting sick from the measles. Doctors refer to this group of people as “vaccine non-responders.”

About Measles Vaccines and Vaccine Non-responders

Immunization with the measles vaccine, known as the mumps-measles-rubella (MMR) vaccine, reduces the risk of infection with measles when exposed to the virus that causes the disease. Immunization with the MMR vaccine can also reduce the severity of symptoms if vaccinated individuals do get the measles.

Vaccinations work by “teaching” the immune system how to recognize and attach the measles virus. Vaccinations involve the introduction of live, attenuated measles virus. That means the vaccine contains a harmless version of the measles virus. The body responds to the presence of the vaccine by creating antibodies that will fight any measles virus they encounter in the future.

Some people have a strong response to immunizations with the measles vaccine, and develop a robust army of measles antibodies. These high-responders have a very low risk of contracting measles when exposed to the virus. Low-responders, whose bodies may have developed only a few antibodies to the measles virus, may contract measles but experience only mild to moderate symptoms.

Certain factors can influence a vaccine’s effectiveness. The viruses inside vaccines can die during the attenuation process to alter its effectiveness, for example. Administering vaccinations at the wrong time or incorrectly can also lower the effectiveness of the vaccine. Host-related factors, such as a person’s genetics, immune status, age, health, and even nutritional status can also affect how well a vaccine works.

While vaccinations may not provide 100 percent protection against the measles, it is still important that everyone who can receive vaccinations have the MMR. Widespread vaccination provides “herd immunity” that prevents serious viruses like measles from spread to those who either cannot receive the vaccine or who are low- or non-responders.

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com